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Abstract

This study involved two phases: first when classification was

based on the calibration sample, and second in a cross-validation

setting. Computer generated data were used. Results obtained from

rules based on probabilities of group membership were compared for

accuracy when classifying in the discriminant space and in the predic-

tor variable spaces. In the first phase accuracy was greater in the

predictor variable spaces, while the reverse was true in the second

phase. In general, rules based on probabilities of group membership

were approximately equally accurate, and more accurate than a rule

related to a multiple regression analysis. Other findings are also

discussed.



AN EMPIRICAL CO:IPARISOZ1 OF THE ACCURACY OF SELECTED

MULTIVARIATE CLASSIFICATION RULES

It is sometirs of interest to a researcher to classify individuals

or objects into one of several categorie3 or classes on the basis of a

set of observed measures. In so doing the researcher must choose an

appropriate multivariate classification rule. From the investigator's

viewpoint, appropriateness may be determined in terns of 1) having a

sound theoretical basis, 2) being capable of accommodating more t'an

two criterion populations, and 3) having been adapted, or readily adap-

table, to computer programming. Xany such multivariate classification

decision rules have been proposed. This study dealt with five selected

rules of identifying the population to which an individual may be

assigned.

In a multivariate classification problem we begin with, say, k

.subsamples (or groups) of individuals, independently drawn from k well

defined populations. There are, say, p measures available for each of

the E individuals that comprise the total sample. The criterion employed

in classifying an individual on the basis of the p measures depends upon

the particular decLsion rule used. For each of the rules investigated,

it is necessary to calculate k numerical values--one corresponding to

each of the k groups--for every individual and then to classify according

to the criterion of the rule employed.

In this study, two basic assumptions Were made: 1) the k populations

are p-variate normal, and 2) the k popul-stion covariance matrices are
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identical.' A brie, discussion of the rules under scrutiny in this in-

vestigation follows.

Rule 1. Assuming equal costs of misclassification and making the

above two assumptions, a (linear) discriminant score of individual n for

the gth population (Rao, 1965, p. 482)
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where

t = the common population (p x p) covariance matrix,

X
n
= the (p x 1) predictor score vector for individual n,

pg = the (p x 1) centroid for population g, and

7 = the probability that individual n (selected at random)

is from population g.

Since the expression

-1/2 loge ItI

would be common to all k scores for a given individual, the equivalent

of [1], for classification purposes, is

4.-1
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Substituting (maximum likelihood) estimates of t and pg yields a dis-

criminant score of individual n for group g:
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(p x 1) vector of observed mean scores for group g, and-g
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C the (p x p) poole6 within-groups covariance matrix based

on the sample of N in.2fviduals.

Here the elements of the matrix_ C are given by

where

with

e..
c13 ..

(N = 1, PS
Is)

k Ng
e. = E E

n=1
(Xign

ig
- R ) (xjgn. - a: g),

N
g
= the number of individuals in group g,

Xl..--
gn the score on predictor variable i for individual p of

group g, and

R.
lg = the mear of predictor variable i for group g.

Of course, since .:.ample estimates are used, an optimum solution cannot

be claimed.

The first rule investigated may be stated' as

[3] R : L
ng

Lng" g,g' = 1, k ; g # g' .

This is a maximum likelihood method of classification in the sense that

it is equivalent (when population values are known) to the r.ule which

assigns the indiyidual with measurements X to that population for which

the posterior probability of population membership has the highest value.

Rule 2. Another indirect application of the criterion of highest

probability is as follows (gee Cooley and Lohnes, 1971, p. 264). For



each individual n the values of k quadratic forms are determined; these

quadratic forms are given by

[14] x
2

= x' D
1

x
ng -n g -n

where

Dg = the (p x p) covariance matrix for group g, and

xn = (X
ln

- R
lg'
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If sampling is from a p-variate normal population, the resulting values

of [4] follow a chi-square distribution with p degrees of freedom (Rao,

1952, p. 55). Geometrically, the value of [4] is a measure of the close-

ness of individual n's profile point, (X1n, Xpn), in the p-space

of group g to the centroid of group g. Since the tabled probability of

a given chi-square value is the likelihood of obtaining a larger value,

this probability may be considered the proportion of individual points

that would be expected (in the long run) to lie beyond the locus of

density (or "centour") on which this particular individual's point lies.

The "centour score" for an individual, then, yields an estimate of the

percent of individuals in a population that are further from the centroid.-

The higher the group "centour score" of an individual, the greater is

his similarity to that group. Hence, this decision rule involves assign-

ing individual n to that population for which his centour score is

highest, or equivalently, to that population which yields the lowest chi-

square sample value given by [4]. Symbolically, this rule may be stated

as



[5]
2 2

Xng
g, St = 1, k ; g g'.

Heterogeneity of dispersion enters into [5] in a somewhat un-

desirable way in that the greater the dispersion for a particular sample

the greater the likelihood that individuals of unknown classification

will be identified with it. Nor does [5] take into account prior prob-

abilities, of population membership. Only if the sample dispersion

matrices are identical and the prior probabilities are the same does [4]

result in a minimum number of misclassifications. One way of adjusting

for heterogeneity of dispersion and prior probability consists of modify-

ing [5] (see Tatsuoka, 1971, pp. 222-225 for other modifications of [5]):

[6]
2 < 2

2 log
e
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Xng Kug'
loge

ID 1

+
,

Rule 3. A more direct application of the classification criterion

of highest posterior probability of population membership is the basis for

the third decision rule (see Cooley and Lohnes, 1971, p. 267). Here a set

of hypotheses regarding population membership of individual n is involved.

One of the hypotheses is to be retained and the others rejected. The fol-

lowing notation for determining the likelihood of such an hypothesis is

used:

[7]
17(11g 1)111)

g = 1, k.

This denotes the probability of hypothesis g, given the score vector of

individual n. Hypothesis g, Hg, states that individual n belongs to pop-

ulation g. For each individual there would be k such hypotheses, and that
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hypothesis for which the likelihood is a maximum is selected.

The conditional probabilities of [7] can be computed from Bayes'

formula, provided the prior probabilities are known or can be estimated.

Let P(X
n

I Hg) denote the conditional probability of observing the score

vector X
n

, given that H is true; i.e., the probability that individual

n selected at random from population g will have the particular combina-

tion of predictor scores, Xn (technically, within a "small" neighborhood

of X ). Then the conditional probability that H is true, given that
-n

observation vector Xn for individual n was obtained is

[8]

7 P(X 1 H )
P
ng

(H
g I

X
n
) -

-n g

k
, g = 1, k.

E 7 P(X h 1)
g'=.1 g -n g

Under the assumption that the predictor variable vecLors follow a p-

variate normal distribution in each of the k populations, [8] may be

expressed as

[9]

1,-

Tr ID I 2exp(-15 x2 )

P (H I ) = A

-

.
ng

ng g -
X
n k _u

E ir 1k,1 -2exp (-1/2 x2
g)ng1 g' 'II

, g = 1, k,

where x2
g

, is defined by [4]. Formula [9] gives the (posterior) prob-

ability that individual n with the score vector Xn, selected at random

from the entire sample, will be a member of population g. Thus, a third

classification rule is to assign an individual to that population for

which his posterior probability of population membership is largest.



Such a rule may be expressed as

[10] R
3

: P
ng

P
ng

g, g' = 1 k ; g g'.

Since [9] utilizes information regarding both prior probabilities and

differences in dispersions, [10] produces the same results as those ob-

tained by using [6] (Huberty, 1969, p. 79).

Since the denominators of P
nc,

and P
ng

, for a given individual are
0

identical, classification according to Rule 3 may be equivalently per-

formed by assigning individual n to that population g for which the

value of

rg ID g I 2exP(-1:1 x2 )
n g

is a maximum. And since the logarithm function is monotonic increasing,

this is equivalent to maximizing

log r lop ID I -1;.1(X R )' D-1 (x. - Rg).

If Dg is replaced by t and
g
by p

g
, then this is the same as maximizing

[1]. That is, Rule 1 and Rule 3 are the same except for the sample co-

variance matrix used in computing the k values of each classification

statistic.

It is of interest to note that according to Rule 2 and 3, classifi-

cation is performed in the p-dimensional predictor variable-spaces. To

classify in the reduced or discriminant space, it Is necessary to deter-

mine linear composites of the original scores, i.e., discriminant function

Values (see Cooley and Lohnes, 1971, Ch. 9), and to separate the new



space defined by these functions into k mutually exclusive regions.

(These function values are not to be confused with the discriminant

scores mentioned in relation to Rule 1.) To determine the dimension of

the reduced space either the eigenvalues of the usual determinantal equation

may be subjected to a significance test, or a subset of the non-zero

eigenvalues that accounts for a large percent, say 90, of the discrimina-

ting power of the predictor variable may be chosen. It was decided, for

this study, to employ Bartlett's test of significance (Rao, 1952, p. 373).

(An a-level of .10 was used.) As Tatsuoka (1971, p. 233) points out, it

is reasonable to confine attention to only those discriminant functions

that are statistically significant so as to decrease the reliance on

apparent differences among the criterion groups due to sampling error.

Rule 4. The formulation of the classificatory problem as conceived

by Knutsen (1955) and Horst (195C,a) involves finding separate regression

equations contrasting each criterion group in turn with all others. In

finding the regression equation corresponding to group g, the dichotomous

criterion variable assumes the value 1 for individuals in group g and 0

otherwise. To determine the weights used in Horst's "least squares"

multiple classification method, the standard procedure is followed. The

least squares estimates of one set of population regression coefficients

are given by

tul

where

b = T
1
v ,

b = the (p x 1) column vector of sample weights,
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T = the (p x p) total sample deviation score cross-

products matrix, and

v = the (p x 1) column vector of deviation score cross-_

products of the predictors and the (dichotomous) cri-

terion, y -- the deviations being taken from the grand

mean.

Here, the elementS of T are given by

where

k N

= E E (x. - R.1 )(Xjgn - Rti .), i,j = 1, p,lgn j
g=1 n=1

Xi = the mean of the scores on predictor variable i for all

N individuals.

The jth element of v for group g coLtrasted with the remaining groups is

given by

N Ng N N
E x Y=E X. - E X. .

n=1 ign gn n=1 Jgn N jgn

To generalize [11] to represent the k sets of weights, we write

the (p x k) matrix, B, where

[12] B = T
1
V.

The gth column of B is the set of weights corresponding to the gth group,

and the (p x k) matrix V is a similar extension of v. The weighty obtained

from [12] are appropriate for use with deviation scores. If individuals

are to be classified into one of several populations using raw score data,

a correction term must be applied in order to achieve group-to-group compar-
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..se of raw scores instead of deviation scores does not change

the "slope" of the hyperplane but only the point of origin. Therefore, the

regression weights would remain the same. The raw score formula for

predicting membership of individual n in population g from the score vector

-X' = (X
ln' ' pn

)
-n

is

[13] Y
ng

= b' X
-n

+ c
g-g

where

b = the gth column of B, and_g

c = Y b' R.g g -

In the latter expression,

V = the mean of the criterion measure which, when the gth

N ,

group is the one considered, is simply , and

the (p x 1) vector of means of the p predictor variables

for the total sample.

Classification according to this decision rule requires that for

each individual, k composite (regression) scores be obtained (using

equation [13]) which are his k predicted criterion values. Since an

individual's actLal criterion score is 1 or 0, depending upon his group

membership, it follows that an individual n may logically be identified

with that pbpulation for which his composite weighted score is nearest
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to unity. Thus, we have

[14] R
4

: 1

ng
- 1.0 1 I Yng, - 1.0 I, g, g' = 1, k; g g'.

Rule 5. The last rule investigated is based upon posterior probability

of population membership, as in Rule 3. However, the methods of calculating

the posterior probabilities for the two rules differ. The formula used to

compute the posterior probabilities involved in Rule 5 is based on "Case E.

= t but unknown, p
g

unknown," presented by Ceisser (1966, p. 155). (See

also, Cooley and'Lohnes, 1971, p. 269.) Under the assumption of p-variate.

normality, Geisser obtains the "predictive density of a future observation

(vector) given the available data" via a Bayesian approach. Geisser's density

function is

[15] h( Xn I H
g
)

2

N + 1
[

1 +
(N + 1)(N - k)

C
-1

x
g n- -n

)
-(N -2k + 1)

2

where all symbols have been previously defined. Thus, the probability

that an individual n belongs to population g, given that he has a score

vector X
n

is by Bayes' formula,

[16] Qng (Hg ( ?in) -
g

h( Xn IH
g
)

k
E h (X IH

g -n g

Hence, the last rule used in this study may be stated as

[17] : Qng21 Qng,, g,g' = 1, k; g g.

g = 1, k.
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Of course, since for a given individual, the k values of the denominator

of [16] are identical, individual n may be assigned to that population

,rresponding to the larvst value of ng h (X
n
IH

g
).

All five of these decision rules were judged to be appropriate

according to the three criteria mentioned at the outset.

Procedure

To effect the simulation of drawing random samples of size N from

k p-variate normal populations with a known common covariance matrix a

highspeed electronic computer--IBM System 360, Model 65--was used. In

this study the number of predictor variables considered was p = 10, and

the numbers of criterion groups were k = 3 and k = 5.

To obtain the population covariance matrix, t, and the population

mean matrix, M
Pop

, we proceeded as follows. The classical factor analysis

model (Harman, 1967, p. 15) may be represented by

m
[18] z. = E ajh F

h
+ d Uj, j = 1, 10,

h=1 j j'

wherezvFwandiLare standardized normal variates, m < 10, and a
jh

and di are real-valued constants. Further assumptions underlying this

model are

Cov (Fh, Fh,) = Cov (Fh, Uj) = Cov (11j, Uj,) = 0,

where these covariances refer to population values. Hence,

2[19] 1 = c E (z.) = E a.
2

+ d
'

j = 1, 10,
h=1

jh j
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and
m

[20] p = E (z. z = E ajh a , j, j' = 1, 10; j 0 j'.
3 h=1

Thus, t (10 x 10) is obtained using the relationship

[21] t = A A' D
2

,

Pop pop pop

where

A
Pop

= a (10 x m) matrix of elements ajh, and

D = a (10 x 10) diagonal matrix with diagonal elements d
pop J.

Equation [21] is the matrix expression for equations [19] and [20].

m
The communality ( E ash ) of each of the predictor variables was

h=1

arbitrarily set at .75, thus making the reliability of variable z
j

at

least .75.
3

This condition gives a D
pop

matrix with all diagonal elements

equal to .50. Any A
pop

matrix which is consistent with equations [19]
m

and [20], under the constraint that E a2. = .75, will suffice.
h=1 3"

,

Separation between the k populations was accomplished by prescribing

a (10 x k) population weight matrix:
4
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wll w12 w13 1 w14 w15

w21
w
22 w23 i w24 w25

w31 w32
0

1 w34
w
35

w41
0

w43 1

w
44

0

1

0 w
52 w53

0 w
55

W =
pop

w61
0 0

t

w
64

w
65

1

0
w72

0
i w7474
1

1

0 0
w83 t

0 w
85

1

0 0 0 t 0 0

1

0 0 0
1

0 0
t

From W
pop

a (10 x k) population mean matrix, M
Pop

, was then obtained

(see Footnote 4) by the relationship

M = t W .pop pop

The non-zero weights were chosen so that the population values, A2
gg

of Mahalanobis' generalized distance between (the centroids of) two

populations g and g', were "significant"; i.e., the significance test

presented by Rao (1965, p. 480) would find the sample counterpart, D
2
ge ,

significant
5

for the smallest value of N used in this study. These

population distances are given by

i[22] egg, = (Pg l!g1)1 r(Lig 1)'
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Corresponding to each total sample site, sample score matrices of

size (10 x Ng) were generated from each of the k p-variate normal popula-

tions having the common covariance matrix, 4. To generate these sample

score matrices a procedure similar to that suggested by Kaiser and

Dickman (1962) was employed. A number was selected from a uniform (0,1)

distribution using a subroutine called RANDU, corresponding to which a

number from a normal (0,1) "continuous" distribution was located. This

technique was used to produce the elements of both an (m x Ng) matrix F

and a (10 x N ) matrix U. The subsample score matrix corresponding to

group g was then obtained (see equation [18]) using

where

. Xg = AF + DU + rig ,

Xg = the (10 x Ng) matrix of "observed" scores, and

Mg = the (10 x Ng) matrix, the ith row of which contains

the (constant) value pig.

Thus, in essence, random samples were selected on the orthogonal F and U

matrices, and the observed scores were obtained by abov,. transforma-

tion.

There were two phases in the present study. In addition to the two

assumptions mentioned at the outset, Phase I of the study was carried out

under the following three restrictions: 3) the a priori probabilities

of group membership, n , g = 1, ...k, are identical; 4) the number of

individuals drawn from each population is the same; and 5) eaci: sample of



16

individuals is classified on the basis of data for that sample. For both

k-values the total sample sizes considered were N = 90, 150, 300 and 450.

Because of the fourth restriction in this phase a random sample of sirc. N

was composed of k subsamples of size iii in this phase sampling

from each of the k populations was repeated 100 times for each value of

N. Restriction 3) lead us to the "uniform ignorance" assumption of Tr = 1/k,
g

g = 1, k (see Tatsuoka, 1971, pp. 225-226); hence the Tr-values called

for in computing the probabilities in Rule 3 were deleted. Rule 5 was not

included in Phase I because under conditions 3)_and 4) it yields results

that are identical to those of Rule 1 (Huberty, 1971).

The purpose of Phase II was to empirically investigate the accuracy

of the five selected classification rules in a situation where conditions

3), 4), and 5) were either removed or modified in such a way as to make

them more compatible with the "real world." In practical applications of

.multivariate classification theory, the number of individuals in each of

the subsamples that ,1,-E!,3ent the k populations of interest often is not

the same. Hence, the k prior probabilities, estimates of which are usually

based on the subsample sizes, can not be taken to be identical. Further, the

investigator often desires to classify individuals whose-proper classifica-

tion has not been determined at the time when sampling to Place. Thus, he

seeks a relatively accurate classification rule to employ with individuals

other than those in the "calibration sample." The proportion of misclassifi-

cations obtained by using the calibration or norming sample--the "apparent"

error rate--tends to underestimate the "actual" error rate- -the long run

frequency of misclassifications using replication samples (Geisser, 1970).
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Intuitively this seems reasonable since classlficati,- ;pdi,'dual

in the norming tt is based on a rule which is not only iu some

sense optimal for these particular individuals but is likely to capLcalize

favorably on chance sampling fluctuations. It is for these reason 5i tlat

7.11.h'e situation of Phase I was altered by the removal or modificatiou

conditions 3), 4), and 5).

In Phase II of the study the total sample sizes considered were N = 150,

300, 450, and 600 when three criterion groups were involved and N =

430, 600 when k = 5. A random sample of size N was composed of k s. samples

of size N1, ..., Nk. For k = 3, the ratios of subsample sizes were a.Tahitrarily

.set at 9:5:1. For k = 5, the ratios selected were 12:9:5;3:1.
6

YL.h.

assignment of subsample size to each respective group was made by eaptoying

a table of random numbers. For example, with k = 5 and N = 450, tthe assign-

ment was: Ni = 75, N2 = 15, N3 = 45, N4 = 180, and N;5 = 135.

Rather than apply the selected rules to the sample of " indivicuals" on

which the classification statistics are determined, the necessary matrix

calculations were performed on the first sample and classificatiom.according

for each of the five
7
selected rules was carried out on the succeedtmg 10,0

samples. Thus the comparative accuracy of the rules was determinediiim a

"cross-validation" setting.

Data Analysis

The criterion used to judge the accuracy of each of the five Wecision

rules is the number of correct classifications over k groups. I n a ms472ing

the accuracy of population identification provided by the rules, a deszip-

tive analysis wa.5% performed on the number of correct classifications aver
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all k groups for each value of N and each value of k. Frequency distri-

butions of the number of correct classifications for each run of the

experiment were obtained and comparisons were made of 1) the means and

standard deviations of these distributions, and 2) the intercorrelations

among the numbers of correct classifications obtained from each of the

rules investigated.

An analysis.of variance was employed in comparing the results of the

rules statistically. The "treatments-by-subjects" design described by

Lindquist (1953, Ch. 6) was applied8 to the numbers of correct classifi-

cations to compare the results of Rules 2 and 3 in both the predictor

variable spaces and the discriminant space. The "treatments" were the

rules being investigated, while the "subjects" were the (100) runs. The

following five hypotheses were tested:

(i)
HO : P2V P3V P3D '

(ii) H
0

: p
2V

= p
2D '

(iii) HO : 43V P3D '

(iv) Ho : p29 = p39, and

(v) Ho : pl = p2.5 = p4 = P5

where

p
1V = the population mean of the numbers of correct classifi-

cations using Rule i (i = 2 or 3) in the predictor variable

spaces,
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the population mean of the numbers of .:orrect classICi.

using Rule i (i 2 or 3) in the discrIT:Inant space:,

=. the population mean of the numbers ot corre.:t AficatL.m.;

using Rule i (i 2 or 3) in the spaue determine(t I. t(:c

sults of the tests of hypotheses (ii) and (iii), anl

p
2.5

the population mean of the numbers of correct classifications

for the rule and space that is expected to be "best" in

accord with the results of the test of hypothesis (iv).

Hypotheses (ii) and (iii) were tested to determine nor

is different when classifying in the discriminant space instead in tb:.

predictor variable spaces. Of course, the test of hypothesi,3 (iv) va-

only made if the first hypothesis was rejected. The prt2e6ur:! uyed

test hypotheses (ii), (iii), and (iv) is that of Scheff (195,), =A),

(As mentioned previously Rule 5 was not considered in P;;asc, i of th.,

Results

Many of the reported studies in the behavioral sciences that emlQy

"multiple group discriminant analysis" were done for the purpose of assign -

ing an individual to one of a finite number of populations to which he

may belong. -This assignment was made on the-basis of a set of characteristics

observed on the individual. Sometimes, especially in personnel work al--d

career planning studies, discriminant analysis is used primarily a :1;,r:

of analyzing group and variable 'differences; and the classification aspect

of the analysis is considered as a by-product. The primary concern of the

present study, however, was one of identification; that is, how accurately

do different decision rules identify an individual as a member of one of



several criterion populations? Of course, one way to ansvwr qu',.tion

and, hence, compare the efficiency of these rules, is tot I (.t(.,..ermine for each

rule the proportion of correct classifications of a fixed sample of sub-

jects. For a given set of rules being investigated the "best" one may be

defined as that one which consistently, over repeated sampling, produces

the highest proportion of correct classifications.

To aid in the interpretation of the results the percents, .o:ans, and

standard deviations based on chance expectations are included in the

appropriate tables. The resulting values are based on the multinomial

situation present here. The expected proportion of correct classifications

for a given N-value across all k groups is

1
p = \T E

g=1

7T Ng.

g g

In this study Tr was taken to be N /N. Of course, in Phase I, p = 1/k.

The expected number of correct classifications is given by Np; and 0-1,,

expected standard deviation of the distribution of correct classifications

is Np(1-p) .

The results of this study will be discussed separately for each phase

and each k-value.

Phase I k = 3. The vrcents, means, and standard devir.l.fr of the

numbers of correct classifications, as reported in Tablu i, r.:floct the

Insert Table 1 here

efficiency of each of the four rules studied. The means F,Iven i n THIlc, 1

indicate that Rules 2V and 3V (classifying in the predictor variable Epaces
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according to Rules 2 and 3, respectively) identify population membership most

accurately. This result was also evident from a comparison of the frequency

distributions of the numbers of correct classifications for each rule. The

distributions resulting from classification using Rules 2V and 3V were quite

similar. The corresponding distributions for Rules 1, 2D, 3D, and 4 were

also similar though markedly lower. This similarity was also apparent from

the intercorrelations among the numbers of correct classifications according

to the different rules. Hypothesis (i) was clearly rejected for all four

values of N; the value of each mean square ratio (MSR) was at least 500.

The differences indicated in hypotheses (ii) and (iii) were both highly

significant--as judged by the Scheff6 procedure--with the use of the pre-

dictor variable spaces being favored over the discriminant space. Since

both hypotheses (ii) and (iii) were rejected for all N-values, the results

of this phase of the study do not agree with those reported by Lohnes (1961).

That is, a significant loss in discriminating power was observed when

classifying according to Rules 2 and 3 in the discriminant space rather than

in the predictor variable space.

The outcomes of the tests of hypotheses (ii) and (iii) indicate that

hypothesis (iv) could he stated as

(iv) Ho : P2 f P3V

In no case could this hypothesis he rejected. However, because in each case

the observed mean of Rule 3V was greator than that of Rule 2V, the fifth

hypothesis was stated as

(V) Ho : p1 P3V P4



The values of the four MSRs in the testing of (v) were in no case less than

600. Hence, in each case hypothesis (v) was rejected; and Scheff6ls method

was again employed in making follow-up pairwise comparisons. Differences

between Rule 3V means on the one hand and Rule 1 and Rule 4 means on the

other were nighiy sign.tfLcant indicating that Ruia Sr could be expezce.:

to produce (in the long run) the highest number of correct classifications.

Further, it was found that the classification accuracies of Rules 1 and 4

were not significantly different. This result is not consistent with that

found by Knutsen (1955), who concluded, from his single sample, that

Rule 4 was more accurate than Rule 1.

Phase I k = 5. Except for the fact that the numbers of correct

classifications were considerably larger, the results for five groups were

very similar to those for the three-group case. As seen in Table 2 the

reflected trends (from rule to rule and along N-values) are parallel to

those results when k = 3. The outcomes of the tests of the five hypotheses

of interest were also the same for the five-group situation as for the case

of the three groups.

Insert Table 2 here

Phase II k = 3. The percents, means and standard deviations of the

numbers of correct classifications are given in Table 3. These results

indicate the superiority of Rules 1, 3D, and 5 in terms of accuracy of

identification of population membership. That these three rules tend to

produce similar degrees of classification accuracy is apparent from tables

(not presented here) of the intercorrelations and frequency distributions
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of the numbers of correct classification. The correlations among these

rules ranged from .85 to .99. It was pointed out earlier that in a

"true" sense Rules 1 and 3 are equivalent. That is, the classification

statistics used are the same except for the sample covariance matrix used

in computing the k values for each individual. Furthermore, it has been

shown that when the N -values are the same, Rules 1 and 5 are equivalent.

Thus, descrepancies among the results yielded by Rules 1, 3, and 5 are

merely a function of the "goodness" of the sample estimates of t and of

Rg , g = 1, k.

Based on the analysis of variance results (no NSR was less than 200)

hypothesis (i) can not be considered tenable in any of the four sample

size cases. As judged by Scheff6's procedure, the differences indicated

by hypotheses (ii) and (iii) were highly significant in all cases. Rule 2

Insert Table 3 here

in the predictor variable spaces produced a greater number of correct

classifications than in the reduced or discriminant space for all N-values.

Rule 3, on the other hand, appears to be more accurate for all N-values

considered in this study if it is applied in the reduced space. This latter

result is not consistent with that found in Phase I.

The outcomes of the tests of hypotheses (ii) and (iii) indicate that

hypothesis (iv) can be stated as

(iv) H3
P3D /12V
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This hypothesis was rejected in all four situations, with Rule 3 (in the

discriminant space) being favored for each sample size. This result lead

to the following statement for hypothesis (v):

(v) H0
: P1 P3D P4 P5

Since the MSRs resulting from the analysis of variance in the testing of

this hypothesis were at least 700 for any N-value, these four rules were

not judged to be equally accurate. The method of Scheffe was again

employed in making the follow-up pairwise comparisons. Differences

between Rule 4 means on the one hand and means of Rules 1, 3D, and 5

on the other were highly significant. In all situations the significant

results indicated that Rule 4 would be expected to produce (in the long

run) fewer correct classifications. Further, it was found that the

classification accuracies of Rules 1 and 3D, 1 and 5, and 3D and 5 were,

in each case, not significantly different. The results of the tests

following hypothesis (v) are summarized in Table 4.

Insert Table 4 here

Phase II k = 5. As in the three-group case, Rules 1, 3D, and 5

produced the greatest number of correct classifications (see Table 5).

Again hypothesis (i) was rejected in each case (all MSRs were at least

300), and of the four rules considered in this hypothesis results of

applying Scheffe's procedure indicated Rule 3D as being the most accurate.

Table 6 summarizes the results of the application of Scheffe's individual
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comparison test following significant MSRs (all ratios were at least

1000) of the tests of hypothesis (v). Note that for N = 450 Rules 1

and 5 al...! more accurate than Rule 3 (in the discriminant space). For

the other two N-values, the comparisons of Rule 1 versus Rule 3D and

Rule 5 versus Rule 3D indicated no significant differences in classifi-

cation accuracy; and Rules 1 and 5 were equally accurate for all N-values.

Again, as in the case of k = 3, Rule 4 was found to be less accurate

than Rules 1, 3D, and 5.

Insert Tables 5 & 6 here

It should be noted that sampling performed with different orderings

of subsample sizes produced very similar results; that is, nearly the

same rankings of the rules (with respect to classification accuracy)

resulted. Also, it is of interest to note that the results of applying

Rule 5 in the reduced space were almost identical to its application in

the predictor variable spaces; the mean of the seven differences of mean

number of correct classifications over both value6 of k (four for k = 3,

three for k = 5) was .79 and the mean correlation between classification

accuracy in the different spaces over both values of k was .95.

Discussion

Any remarks concerning the results of Phase I must necessarily be

made in light of a situation characterized by the following restrictions:

1) the k criterion populations are p-variate normal, 2) the k population

covariance matrices are identical, 3) the a priori probabilities of popu-

lation membership are identical, 4) the number of individuals drawn from



26

each population is the same, and 5) each sample of individuals is

classified on the basis of the sample data. It was judged that the

populatior covariance (i.e., correlation) matrix used in this study

was not atypical of those found in practice (Cochran, 1964, p. 186).

Perhaps one of the most striking findings of Phase I was the

decreasing accuracy of classification with increasing N. One possible

reason for this is the potential bias that may have been brought into

the situation because of the use of each observed group covariance

matrix rather than the pooled matrix and/or the sampling process itself.

If a bias was present the larger sample sizes would reflect this more

distinctly causing lesser accuracy. Another explanation which accounts

in part for the outcome at hand is as follows. Let us consider Rule 2V

in which the classification of individual n is based on the distance of

his profile point to the centroid of each of the k groups. In the case

of group g, this distance is equal to the mean distance between n's pro-

file point and each of the profile points for the N individuals in the

group.
9 In the event that individual n is a member of group g, one of

the distances entering into the mean necessarily has a null value. The

effect of this would be expected to be inversely related to the size of

Ng. In a two-group case the "true" proportion of correct
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classifications is easily estimable, and in the situation of this

study is obtainable directly using O(A/2) where 0 is the standard

normal distribution function and A2 is defined by [22] (Dunn, 1971).

The simulation procedure was repeated exactly as in Phase I except

for the consideration of only two criterion populations (k = 2). The

proportion of correct classifications also decreased with increasing

total sample size, and the proportion seemingly approached 0(A/2),

which was .755 in this case. As pointed out by Glick (1972), computing

the probability of correct classification for k >2 involves evaluating

an integral over a p-dimensional region, the form of which may vary

with each rule.

That, for the given situation, all of the rules yielded results

that were better than if the classifications were made at random is

clear from a comparison with the chance expectations. A statistical

test of "discriminatory power" is available (Press, 1972, pp. 381-383)

but, because of the obvious outcomes, is not reported here.
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The fact that the numbers of correct classifications were larger for

k = 5 than for k = 3 does not necessarily imply that classification

accuracy for comparable N-values improves as k increases. One reason

for this result in this phase of the study may be that the separation

of the popultions (as measured by Nahalanobis' generalized distance

function, A2) in the k = 5 case was greater than in the case of k = 3.

For k = 3 the mean A2 was 1.55; for k = 5 the mean was 3.86. A closer

examination of Tables 1 and 2 reveals that under the conditions of the

present study the accuracy of classification from use of most of the

rules appears to depend upon N
g

rather than k. For example, the applica-

tion of Rule 2 in the variable spaces yielded 81.1% accuracy for k = 3

and N
g
= 30 versus 80.1% for k = 5 and N

g
= 30; 74.0% for k = 3 and

N
g
= 50 versus 71.1% for k = 5 and N

g
= 60; 67.7% for k = 3 and N

g
= 100

versus 67.8% for k = 5 and N = 90. Such a conclusion would be valid
g

if the distances between the population centroids were the same for both

k = 3 and k = 5, but they were not.

The final remarks pertaining to the results of Phase I have to do

with classification in the discriminant space as compared to classification

based directly upon the original p variables. It is a fact that the

results of classification based on Rules 2 and 3 (assuming identical

population covariance matrices) are the same regardless of whether the

original p variables or the k-1 discriminant functions areused in compu-

ting the chi-square values.' This is true because the differences among

the group centroids are exhausted by the k-1 discriminant functions; thus

the distance between an individual and a group centroid would be the same
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in the p-dimensional spaces of the total sample as in the discriminant

space. So, first, differences in classification accuracy may be expected

because of sampling fluctuations. It is important to note that with

the use of each group covariance matrix, rather than the pooled covariance

matrix, such fluctuations are indeed taken into consideration. Secondly,

since some of the discriminant functions were considered "nonsignificant"

the dimensionality of the discriminant space was sometimes less than k-1,

particularly in the five-group case.

In Phase II of the study restrictions 3), 4), and 5) mentioned at

the outset of this section were removed. The marked weakness of Rule 2D

compared to Rule 3D in Phase II deserves some comment. The same chi-square

values based on the sane number of discriminant functions, were operated

on by both of these rules. Upon examining the results according to sub-

sample size it was found that Rule 2D was as accurate or slightly more so

than Rule 3D for smaller N -values, whereas Rule 3D yielded considerably

better accuracy for larger N -values. That is, by taking into consideration

the prior probabilities, as does Rule 3D, it was often found that the

largest of the posterior probabilities was associated with the largest

subsample size. That this may result is suggested by Tatsuoka (1971,

p. 226).

A result'of Phase II which differed from that of Phase I involves the

accuracy of Rule 3 when classifying in the discriminant space versus

classifying in the predictor variable spaces. In Phan II of the

study classifying in the discriminant space 'yielded better results. It

was conjectured that this superiority of accuracy is a matter of the



stability of the discriminant functions (over repeated sampling). By

"stability" is meant that since a discriminant function is a linear

composite of the predictor variables it would exhibit less sampling

fluctuation over repeated sampling than the single variables which enter

into the composite. Ficwever, an important consideration here is that the

classification statistics used in Rule 3V are based only on the N individuals

in group g (to determine D 1
) whereas the statistics used in Rule 3D are

based on the total sample of individuals (to determine the discriminant

functions).

To summarize, then, in terns of classification accuracy it can be

expected that, under the conditions of either Phase I or Phase II, Rule 2

applied in the discriminant space and Rule 4 will not in the long run do

as well as the other rules. Since a true classification problem is one

which involves assigning as yet "unlabeled" individuals to one of a number

of well-defined criterion populations it may be well to only consider

classification accuracy of rules applied in a cross-validation setting.

(However, a proportion of correct classifications when based on a "large"

calibration sample may be used as an index of discriminatory power of a

set of predictors.) In this sense it was found in Phase II that Rule 1,

3D, and 5 can be expected to yield the largest, and nearly the same,

number of correct classifications.
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FOOTNOTES

1
It is recognized that an alternative multivariate model is

sometimes considered; when a "total population" concept makes sense,
we are dealing with k "subpopuiations." The difference may bear on

interpretation of results.

This is read as follows: "Assign individual n to population g

if his discriminant score, Lng
, corresponding to population g is largest."

3
Although the underlying statistical model of discriminant

analysis assumes no errors of measurement, in this study the predictor

variables are allowed to be fallible in that each variable has a
maximum error variance of .25. Allowing for non-zero unreliability

is in agreement with most studies involving psychometric measurement.

4
The choice of this array of zero and non-zero weights was made

in view of a study which treats the variable selection problem. The

A
pop

and t matrices, the routine employed in arriving at Apop
, and

the W
pop

and M
pop

matrices have been deposited with the National

Auxiliary Publications Service. Order Document No. from

National Auxiliary Publications Service of the American Society for
Information Science, c/o CCM Information Sciences, Inc. 22 West 34th

Street, New York, Now York 10001. Remit in Advance $ for photo-

copies or $ for microfiche and make checks payable to: Research

and Microfilm Publications, Inc.

5A low significance level (a = .10) was employed so as to subject

the classification procedures to a relatively severe test of efficiency.
If the separation of the populations is great, many classificatory
schemes would appear to be equivalently efficient. Also, it was of

interest to keep the probability of making a Type II error--claiming
the groups are not significantly different when they actually are- -
low; hence, a large a-value was used.

6The smallest total sample size that could be used with k = 3

was 150 and with k = 5 was 300 since the given ratios require one

subsample of size 10; with p = 10 a smaller number of "individuals"

would produce a dispersion matrix, D, whose determinant is zero
(since the rank of D would be less than 10).
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A modification of the least squares technique used in arriving

at the classification statistic for Rule 4 was required because of the
unequal sbbsample sizes c.-::ploed in Phase II (see Horst, 1956b)

8
The conservative test suggested by Box (1954) was employed in all

situations.

9_
inis stems fro the fact that

X
n
- R

-g
= 1-- E(x

-n
- x

-1g
) + (x

-n
- x ) + ... + (x

- 1, -2g -n
g



TABLE 1

Phase I

Percents, Means, Standard Deviations of the Number of Correct

Classifications for k = 3a

Rule

1 2V 2D 3V 3D 4
Chance
Expectations

66.6% 81.1% 66.0% 83.0% 66.9% 66.2% 33.3%

N = 90 59.96 73.04 59.44 74.70 60.19 59.60 30

(4.44) (3.57) (5.31) (3,54) (4.93) (4.46) (4.47)

63.4% 74.0% 63.5% 75.07. 63.9% 63.3% 33.3%

N = 150 95.06 110.93 95.19 112.46 95.79 94.94 50

(5.87) (6.28) (5.48) (5.92) (6.17) (5.73) (5.77)

61.7% 67.7Y. 61.9% 68.4% 61.8% 61.6% 33.3%

N 300 185.16 203.21 185.66 205.34 185.31 184.90 100

(7.74) (8.69) (7.86) (9.02) (7.67) (7.50) (8.16)

61.2% 65.2% 61.2% 65.8% 61.4% 61..2% 33.3%

N = 450 275.46 293.59 275.35 296.31 276.26 275.40 150

(10.03) (11.11) (10.12) (10.59) (10.16) (10.09) (10.00)

aStandard deviations are given in parentheses.



TABLE 2

Phase I

Percents, Means, and Standard Deviations of the Number of Correct

Classifications for k = 5a

Rule

1 2V 2D 3V 3D 4 Chance
Expectations

69.1% 89.4% 71.0% 91.0% 72.4% 68.4% 20.0%
N = 90 62.20 80.50 63.93 81.86 -65.16 61.53 18

(4.53) (3.25) (5.22) (2.93) (4.79) (4.50) (3.79)

66.9% 80.1% 68.5% 81.2% 68.9% 66.1% 20.0%
N = 150 100.38 120 13 102.69 121.87 103.41 99.19 30

(5.28) (4.73) (5.68) (4.40) (5.18) (5.12) (4.90)

63.6% 71.1% 64.2% 71.8% 64.6% 63.2% 20.0%
N = 300 190.67 213.41 192.64 215.36 193.72 189.52 60

(8.26) (7.98) (8.34) (7.66) (8.34) (8.66) (6.00)

62.8% 67.8% 63.4% 68.3% 63.7% 62.5% 20.0%
N = 450 "282.67 304.91 285.40 307.43 286.49 281.05 90

(10.17) (10.43) (10.20) (9.97) (10.16) (9.71) (8.48)

a
Standard Deviations are given in parentheses.



TABLE 3

Phase II

Percents, Means, and Standard Deviations of the Number of Correct

Classifications for k = 3a

Rule

1 2V 2D 3V 3D 4 5
Chance

Expectations

66.2% 62.3% 57.1% 63.5% 65.8% 56.0% 66.67. 47.6%

N = 150 99.35 93.50 85.59 95.26 98.72 84.00 99.90 71

(5.36) (5.29) (6.81) (4.84) (5.12) (6.48) (4.99) (6.12)

68.3% 64.0% 56.8% 64.9% 68.2% 56.9% 68.2% 47.6%

N = 300 204.79 192.01 170.35 194.81 204.71 170.77 204.58 143

(6.67) (8.13) (9.08) (7.75) (6.39) (8.64) (6.51) (8.65)

69.6% 63.8% 58.5% 67.8% 69.6% 59.7% 69.6% 47.6%

N = 450 313.17 287.04 263.38 304.93 313.11 268.83 313.16 214

(9.01) (9.64) (10.85) (7.45) (8.72) (10.26) (8.85) (10.59)

69.8% 64.2% 62.0% 67.8% 69.8% 59.3% 59.8% 47.6%

N = 600 418.65 385.02 372.22 406.65 418.75 355.74 418.95 285

(10.23) (11.06) (11.72) (10.89) (10.34) (12.50) (10.13) (12.23)

a
Standard deviations are given in parentheses.



TABLE 4

Mean Difference-3 Ind Scheffd

Critical Values for k = 3

R
1
-R

3D
R
1
-R4 -R

1
R
3D
-R

4
R
5
-R

3D
R
5
-R

4
Critical
Valuea

N = 150 .63 15.35 .55 14.72 1.18 15.90 1.84

N = 300 .08 34.02 -.21 33.94 -.13 33.81 3.05

N = 450 .06 44.34 -.01 44.28 .05 44.33 3.02

N = 600 -.10 62.91 .30 63.01 .20 63.21 3.83

a
Based on

.99
F
1,99



TABLE 5

Phase II

Percents, Means, and Standard Deviations of the Number of Correct

Classifications for k = 5a

Rule

2V 2D 3V 3D 4
Chance

Expectations

65.9% 6C :4% 59.0% 60.8% 65.3% 54.6% 66.0% 28.8%
N = 300 197.60 181.26 1i6.93 182.33 195.95 163.77 197.88 87

(7.65) (7.16) (b.73) (7.05) (7.15) (8.38) (7.45) (7.85)

65.5% 58.4% 56.6% 61.1% 64.8% 58.4% 65.6% 28.8%
N = 450 294.82 262.77 254.84 274.92 291.44 262.90 295.05 130

(10.34) (10.86) (11.56) (8.76) (9.92) (10.84) (10.13) (9.61)

65.0% 58.6% 59.9% 61.8% 64.6% 54.5% 65.0% 28.8%
N = 600 390.04 351.57 359.34 370.80 387.34 326.83 389.99 173

(11.51) (1.38) (11.78) (13.07) (11.47) (11.68) (11.50) (11.10)

a
Standard deviations are given in parentheses.



TABLE 6

Mean Differences and Scheffe'

Critical Values for k = 5

R -R
1 3D

R -R
1 4

R -R
5 1

R -R
3D 4

R -R
5 3D

R
5
-R

4

Critical
Values

N = 300 1.65 33.83 .28 32.18 1.93 34.11 2.63

N = 450 3.38 31.92 .23 28.54 3.61 32.15 3.14

N = 600 2.70 63.21 -.05 60.51 2.65 63.16 3.78

aBased on .99F1,99


